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a b s t r a c t

In this paper, distributed output feedback control of Markov jump multi-agent systems (MASs) is
investigated. Both dynamic equations and index functions of the MASs involved contain Markov jump
parameters. The information available for each agent to design their controllers are only the noisy
output and the jump parameters. By Markov jump optimal filtering theory and the mean field approach,
distributed output feedback control laws are presented. Under somemild conditions, it is shown that the
closed-loop system is uniformly stable and the distributed control is sub-optimal.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, the control and optimization problem of multi-agent
systems (MASs) has become a hot topic in the systems and
control community. One key concerned issue is how to design
distributed control laws based on agents’ local information. For
the case of large population, the main difficulty lies in the high
computational complexity. To overcome this difficulty, the mean
field (MF) approach is extended and applied (Huang, Caines, &
Malhame, 2003; Huang, Caines, & Malhamé, 2007; Li & Zhang,
2008a,b). Especially, Huang et al. (2003, 2007) developed the Nash
certainty equivalence methodology based on the MF theory, with
which distributed ε-Nash equilibrium strategieswere given for the
games of large population MASs coupled via discounted costs. Li
and Zhang (2008a,b) considered the casewhere agents are coupled
via their stochastic long run time-average indices, and obtained
asymptotical Nash equilibria in the probabilistic sense.

Uncertainty is hard to avoid in practice, for instance, failure of
system components and environmental uncertainties. As a proper

✩ This work was supported by the National Natural Science Foundation of China
under grants 60934006 and 61120106011. The material in this paper was not
presented at any conference. This paper was recommended for publication in
revised formby Associate Editor Tamas Keviczky under the direction of Editor Frank
Allgöwer.

E-mail addresses:wangbc@amss.ac.cn (B.-C. Wang), jif@iss.ac.cn (J.-F. Zhang).
1 Tel.: +86 13810488429; fax: +86 10 62587343.

0005-1098/$ – see front matter© 2013 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2013.01.063
mathematical model to describe the dynamical behaviors of the
systems in an environment with abrupt changes, Markov jump
systems have been studied for many years (Costa, Fragoso, &
Marques, 2005; Mariton, 1990; Sworder, 1969; Wonham, 1970).
Recently, Wang and Zhang (2012a,b) investigated MF games of
Markov jump MASs.

Another issue worthy of consideration is the case where only
partial observation of system states can be obtained, since, strictly
speaking, all practical control problems are based on the informa-
tion of output measurements instead of the full states. The con-
trol problems based on the full state information, no matter what
it is, deterministic or stochastic, can only be an approximation of
real problems. For output feedback control of conventional systems
(i.e. the case where only one agent is considered), readers are re-
ferred to Bensoussan (1992), Davis (1977) and Wonham (1968).
Huang, Caines, and Malhamé (2006) considered continuous-time
MF games for MASs with time-invariant parameters based on out-
put measurements and provided a set of distributed control laws.

In this paper, we investigate distributed output feedback con-
trol of discrete-time MASs under the game-theoretic framework.
Both dynamic equations and index functions of the MASs involved
contain Markov jump parameters. The information available for
each agent is the noisy output and the Markov jump parameters
instead of its state. Compared with the previous works (Wang &
Zhang, 2012a,b), here index functions are more general, in which
Markov jump parameters are allowed.

For this kind of systems, we design distributed control by
filtering theory and the MF approach. Due to partial observation of
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the system states, each agent needs to estimate both its own state
and the population state average under stochastic disturbances.
Different from the case of time-invariant parameters (Huang et al.,
2006), not only agents’ estimates for their own states are dynamic
systems driven by a family of independent Markov chains, but also
due to agents’ indices containing Markov parameters agents’ MF
estimation is a function of transient distributions ofMarkov chains,
which bringsmuchdifficulty for analysis of the closed-loop system.
We first prove the MF estimation function is bounded by using
the ergodicity of Markov parameters and the properties of matrix
norms, and then get uniform stability of the closed-loop system.
By exploiting the independence of agents’ Markov parameters and
analyzing the estimation errors of Markov jump optimal filters,
we use the MF estimation function to approximate the population
state average, and obtain a sub-optimal distributed control.

The following notations will be used in the paper. For a given
vector or matrix X , ∥X∥ denotes the Euclidean vector norm or the
matrix norm induced by the Euclidean vector norm of X . For a
family of Rn-valued r.v.s {ξλ, λ ∈ Λ}, σ(ξλ, λ ∈ Λ) denotes the σ
algebra σ {[ξλ ∈ B], B ∈ Bn, λ ∈ Λ}, whereBn is an n dimensional
Borel σ algebra. For a sequence of real numbers {an, n = 0, 1, . . .}
and a sequence of positive numbers {bn, n = 0, 1, . . .}, an = O(bn)
denotes lim supn→∞ |an|/bn < ∞.

2. Problem description

Consider the following MAS:

xi(k + 1) = Aθi(k)xi(k) + ui(k) + Dθi(k)wi(k + 1), (1)

yi(k) = Cθi(k)xi(k) + Lθi(k)vi(k), 1 ≤ i ≤ N, (2)

where xi, ui ∈ Rn and yi ∈ Rp are the state, input and output of
the agent i, respectively; {wi, 1 ≤ i ≤ N} and {vi, 1 ≤ i ≤ N}

are stochastic noises. {θi(k)} is a family of discrete-time ergodic
Markov chains taking value in S = {1, 2, . . . ,m} with the same
transition probabilitymatrix P = {pij, i, j = 1, . . . ,m} and station-
ary distribution π = {πj, j = 1, . . . ,m}. The indices of N agents
are described by

JNi (u) = lim sup
T→∞

1
T

T
k=0

E
xi(k + 1) − Hθi(k)x

(N)(k) − αθi(k)
2,

1 ≤ i ≤ N, (3)

where H(·) ∈ Rn×n, α(·) ∈ Rn, x(N)(k) =
N

i=1 xi(k)/N is popula-
tion state average, and u = (u1, . . . , uN).

Remark 2.1. The above model has a wide practical background.
Consider a market composed of many firms. For the firm i, the
profit level xi depends on the input ui and the jump parameter
θi which depicts operational uncertainty, such as failure in the
production line. Assume that, the profit goal for each firm is to
attain some function of the average profit of all firms and the jump
parameter.

The objective of this paper is to design distributed output feedback
control laws for agents in the system (1)–(3) under the game-
theoretic framework, that is, to optimize the index group (3) over
the group of control sets:

Ul,i =


u|u(k) ∈ σ {yi(j), θi(j), 0 ≤ j ≤ k}


, 1 ≤ i ≤ N.

For the convenience of citation, here we list the main assumptions
to be used in the paper:

(A1) {wi(k), 1 ≤ i ≤ N} and {vi(k), 1 ≤ i ≤ N} are
d-dimensional Gaussian white noise sequences defined on a
probability space (Ω, F , P ), E[wi(k)] = E[vi(k)] = 0,
E[wi(k)wT
i (j)] = E[vi(k)vT

i (j)] = δkjId, 1 ≤ i ≤ N , where

δkj =


1, if k = j;
0, otherwise.

(A2) (A,D, P) is mean-square stabilizable, and (A, C, P) is
mean-square detectable,2 where A = (A1, . . . , Am), C = (C1,
. . . , Cm), and D = (D1, . . . ,Dm). LjLTj , j = 1, . . . ,m are positive
definite.

(A3) Initial values {xi0} are independent random variables;
Exi0 = x0, 1 ≤ i ≤ N; max1≤i≤N E∥xi0∥2 < ∞.

3. Design of control law

To inspire the design of distributed control, we first consider the
case where all the system states are known. Let

Ug,i =


u|u(k) ∈ σ

 
1≤i≤N

σ(xi(j), θi(j), 0 ≤ j ≤ k)


.

Theorem 3.1. For the system (1) and the index (3), if Assump-
tions (A1) and (A2) hold, then for any set of control {ui ∈ Ug,i, 1 ≤

i ≤ N},

JNi (u) ≥

m
j=1

πjtr(DjDT
j ), 1 ≤ i ≤ N. (4)

In particular, if we take ui(k) = Hθi(k)x
(N)(k) + αθi(k) − Aθi(k)xi(k),

then

JNi (u) =

m
j=1

πjtr(DjDT
j ), 1 ≤ i ≤ N. (5)

Proof. From (A1) and (3) it follows that

JNi (u) = lim sup
T→∞

1
T

T
k=0


E
Aθi(k)xi(k) + ui(k)

−Hθi(k)x
(N)(k) − αθi(k)

2 + E∥Dθi(k)wi(k + 1)∥2


. (6)

By the ergodicity of {θi(k)},

lim sup
T→∞

1
T

T
k=0

E∥Dθi(k)wi(k + 1)∥2

=

m
j=1

lim sup
T→∞

1
T

T
k=0

tr(DT
j Dj)pj(k) =

m
j=1

πjtr(DT
j Dj),

where pj(k) = P (θ1(k) = j). This together with (6) gives that

JNi (u) ≥ lim sup
T→∞

1
T

T
k=0

E
Aθi(k)xi(k) + ui(k)

−Hθi(k)x
(N)(k) − αθi(k)

2 +

m
j=1

πjtr(DT
j Dj)

≥

m
j=1

πjtr(DT
j Dj), 1 ≤ i ≤ N. (7)

Thus, by taking ui(k) = Hθi(k)x
(N)(k) + αθi(k) − Aθi(k)xi(k), one can

get Ji(u) =
m

j=1 πjtr(DT
j Dj). �

2 (A,D, P) is mean-square stabilizable, if there is a feedback law u(k) =

Fθ1(k)(k)x(k), such that x(t) = Aθ1(k)(k)x(k) + Dθ1(k)(k)u(k) is mean-square stable,
i.e., E∥x(k)∥2

→ 0. (A, C, P) is mean-square detectable, if (AT , CT , PT ) is mean-
square stabilizable. For the details, the readers are referred to Costa et al. (2005).
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Before designing distributed output feedback control, we first
give distributed control laws for the case where the local state is
available to each agent.

Let g(k) denote the estimate of x(N)(k). Then, by Theorem 3.1
we get the following control laws: for 1 ≤ i ≤ N ,
ui(k) = −Aθi(k)xi(k) + Hθi(k)g(k) + αθi(k). (8)
Applying the control laws into (1) gives
xi(k + 1) = Hθi(k)g(k) + αθi(k) + Dθi(k)wi(k + 1),
which leads to

1
N

N
i=1

xi(k + 1) =
1
N

N
i=1

Hθi(k)g(k) +
1
N

N
i=1

αθi(k)

+
1
N

N
i=1

Dθi(k)wi(k + 1). (9)

Let N → ∞. Noticing θi(k), 1 ≤ i ≤ N are independent of each
other, by theMF approach,3 the estimation function g(k) for x(N)(k)
in the large-population system (1)–(3) should satisfy the following
recursive equation:

g(k + 1) =

m
j=1

pj(k)(Hjg(k) + αj), g(0) = x0. (10)

We now design distributed control laws for the case where only
the noisy output and the jump parameters are available.

From the results in Chizeck and Ji (1990) and Costa and Tuesta
(2003), the Markov jump optimal filtering equation for the system
(1)–(2) is

x̂i(k + 1) = Aθi(k)x̂i(k) + ui(k) + Mθi(k)

× [yi(k) − Cθi(k)(Aθi(k)x̂i(k) + ui(k))], x̂i(0) = x0,
(11)

where 1 ≤ i ≤ N ,

Mj = YjCT
j (LjLTj πj + CjYjCT

j )−1, (12)

Yk =

m
j=1

pjk

AjYjAT

j + πjDjDT
j

− AjYjCT
j (LjLTj πj + CiYjCT

j )−1CjYjAT
j


, (13)

Zj = Yj − MjCjYj, j, k = 1, . . . ,m. (14)

Remark 3.1. The filter (11)–(14) was first given in Chizeck and Ji
(1990). Costa and Tuesta (2003) proved that (11)–(14) was optimal
in the class of linear Markov jump filters. Since θi(k) is known in
(1)–(2), the best linear estimator of xi(k) is the Kalman filter for
time-varying systems. However, as pointed out by Chizeck and Ji
(1990), the off-line computation load of this kind of Kalman filter
will grow exponentially as time goes on. On the other hand, gains
of the filter (11)–(14) are time-invariant and with much lower
computation load.

Substituting the filtering x̂i for the local state xi, by (8)weobtain the
following distributed output feedback control laws: for 1 ≤ i ≤ N ,

ui(k) = Hθi(k)g(k) + αθi(k) − Aθi(k)x̂i(k), (15)
where g(k) and x̂i(k) satisfy (10) and (11), respectively.

4. Property of the closed-loop system

To ensure the stability of the closed-loop system, assume:
(A4)

m
j=1 πjHj is stable, i.e., all its eigenvalues are within the

unit circle.

3 The key idea of MF approaches is to replace the sum of effects of all agents to
one by the aggregate effect (Huang et al., 2007; Lasry & Lions, 2007; Weintraub,
Benkard, & Van Roy, 2008).
Lemma 4.1. Under (A4), for (1)–(3) we have

sup
k≥0

∥g(k)∥2 < ∞. (16)

Proof. From (10) it follows that

g(k + 1) =

k
l=0

Hp(l)x0 +

k
l=0

k
s=l+1

Hp(s)αp(l), (17)

where Hp(l)
=
m

j=1 pj(l)Hj, α
p(l)

=
m

j=1 pj(l)αj. From (A4) and
Horn and Johnson (1990), there exists a matrix norm ∥ ·∥0 induced
by the vector norm ∥ · ∥0 such that ∥

m
j=1 πjHj∥0 = ρ < 1. Since

θi(k) is ergodic, there exists l0, such that for all l ≥ l0,

max
1≤j≤m

∥pj(l) − πj∥0 ≤
1 − ρ

2
m
j=1

∥Hj∥0

.

Thus, for all l ≥ l0,Hp(l)

0 ≤

 m
j=1

πjHj


0

+

 m
j=1

(pj(l) − πj)Hj


0

≤ ρ +

(1 − ρ)
m
j=1

∥Hj∥0

2
m
j=1

∥Hj∥0

, ρ0 < 1.

By a straightforward calculation, we have for all k ≥ l0, k
l=0

Hp(l)


0

≤

l0
l=0

Hp(l)

0
×

k
l=l0+1

Hp(l)

0

≤ ρ
k−l0
0

l0
l=0

Hp(l)

0

≤

l0
l=0

Hp(l)

0

(18)

and k
l=0

k
s=l+1

Hp(s)αp(l)


0

≤


l0−1
l=0

+

k
l=l0

 k
s=l+1

Hp(s)


0

αp(l)

0

≤

l0−1
l=0


l0

s=l+1

Hp(s)


0

max
1≤j≤m

αj

0 +

1
1 − ρ0

max
1≤j≤m

αj

0 , c0.

This together with (17) and (18) implies for all k ≥ l0,

∥g(k + 1)∥2
0 ≤ 2

l0
l=0

Hp(l)
2
0
∥x0∥2

0 + 2c20 < ∞.

Thus, from equivalence of norms in a finite dimensional space, one
can get (16). �

We now show uniform stability of the closed-loop system.

Theorem 4.1. If Assumptions (A1)–(A4) hold, then for the system
(1)–(3) under (15), we have

max
1≤i≤N

lim sup
T→∞

1
T

T
k=1

E

∥xi(k)∥2

+ ∥ui(k)∥2 < ∞. (19)

Proof. Applying (15) into (1) leads to that

xi(k + 1) = Aθi(k)x̃i(k) + Hθi(k)g(k) + αθi(k) + Dθi(k)wi(k + 1), (20)
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where x̃i(k) , xi(k) − x̂i(k). From (A2) together with Costa et al.
(2005) it follows that for j = 1, . . . ,m,

lim
T→∞

1
T

T
k=0

E∥x̃i(k)I[θi(k)=j]∥
2

= tr(Zj), (21)

where Zj satisfies (13). Noticing

E

x̃i(k)x̃Ti (k)I[θi(k)=j]I[θi(k)=l]


= 0, j ≠ l,

we have

lim
T→∞

1
T

T
k=0

E∥Aθi(k)x̃i(k)∥
2

=

m
j=1

tr(AjZjAT
j ). (22)

From (A1) and the ergodicity of {θi(k)}, we have

lim sup
T→∞

1
T

T
k=0

E∥xi(k + 1)∥2

= lim sup
T→∞

1
T

T
k=0

E

∥Aθi(k)x̃i(k) + Hθi(k)g(k) + αθi(k)∥

2

+ ∥Dθi(k)wi(k + 1)∥2


≤

m
j=1

3tr(AjZjAT
j ) +

m
j=1

πj


3tr(HjHT

j ) sup
k≥0

∥g(k)∥2

+ 3∥αj∥
2
+ tr(DjDT

j )


. (23)

Substituting (15) into (11) together with (2), we have

x̂i(k + 1) = Hθi(k)g(k) + αθi(k) + Mθi(k)

Cθi(k)(Aθi(k)x̃i(k)

+ Cθi(k)Dθi(k)wi(k + 1)) + Lθi(k)vi(k + 1)

. (24)

This together with the ergodicity of {θi(k)} gives

lim
T→∞

1
T

T
k=1

E
x̂i(k + 1)

2
≤

m
j=1

πj


4


∥Hj∥
2 sup

k
∥g(k)∥2

+ ∥αj∥
2


+ 2tr(MjCj(AjZjAT
j + DjDT

j )C
T
j M

T
j ) + 2tr(MjLjLTj M

T
j )


, c1.

By (15), it follows that

lim
T→∞

1
T

T
k=1

E
ui(k)

2
≤

m
j=1

πj


4∥Hj∥

2 sup
k

∥g(k)∥2
+ 4∥α∥

2
+ 2c1∥Aj∥

2


.

This together with (23) gives the theorem. �

To analyze the optimality of the control laws (15), we first give the
approximation error of the MF estimation g to x(N) in the mean-
square sense.

Theorem 4.2. For (1)–(3), if (A1)–(A4) hold, then under (15),

lim
T→∞

1
T

T
k=0

E∥x(N)(k) − g(k)∥2
= O


1
N


. (25)
Proof. From (20) and (24), it follows that

x̃i(k + 1) = Aθi(k)x̃i(k) − Mθi(k)

Cθi(k)(Aθi(k)x̃i(k)

+Dθi(k)wi(k + 1)) + Lθi(k)vi(k + 1)

+ Dθi(k)wi(k + 1). (26)

Noticing that {x̃i(k)}, 1 ≤ i ≤ N are independent of each other,
from Ex̃i(k) = 0 and (21) it follows that

lim
T→∞

1
T

T
k=0

E∥x(N)(k) − x̂(N)(k)∥2

= lim
T→∞

1
T

T
k=0

E

 1
N

N
i=1

x̃i(k)


2

=
1
N

m
j=1

tr(Zj), (27)

where x̂(N)(k) =
1
N

N
i=1 x̂i(k). By (24) we have

x̂(N)(k + 1) =
1
N

N
i=1


Hθi(k)g(k) + αθi(k)


+

1
N

N
i=1

Mθi(k)

×

Cθi(k)(Aθi(k)x̃i(k) + Dθi(k)wi(k + 1)) + Lθi(k)vi(k + 1)


. (28)

From (26), (A1) and (A3), we can get

E[x̃i(k)wT
i (k + 1)] = 0, E[x̃i(k)vT

i (k + 1)] = 0, k ≥ 0.

This together with (28) gives

lim
T→∞

1
T

T
k=1

E

x̂(N)(k + 1) −
1
N

N
i=1


Hθi(k)g(k) + αθi(k)


2

=
N
N2

lim
T→∞

1
T

T
k=1

E

 N
i=1

Mθi(k)

Cθi(k)(Aθi(k)x̃i(k)

+ Dθi(k)wi(k + 1)) + Lθi(k)vi(k + 1)


2

=
1
N

m
j=1

πj

tr(MjCj(AjZjAT

j

+DjDT
j )C

T
j M

T
j ) + tr(MjLjLTj M

T
j )

. (29)

From E

Hθi(k)g(k) + αθi(k)


= g(k + 1), it follows that

E

 1
N

N
i=1


Hθi(k)g(k) + αθi(k)


− g(k + 1)


2

≤
2
N


max
1≤j≤m

∥Hj∥
2 sup

k≥0
∥g(k)∥2

+ max
1≤j≤m

∥αj∥
2


, (30)

which together with (27) and (29) implies that

lim sup
T→∞

1
T

T
k=1

E
x(N)(k + 1) − g(k + 1)

2 ≤ O


1
N


. �

Now we are in a position to show the sub-optimality of the dis-
tributed control (15).

Theorem 4.3. For the system (1)–(3), if (A1)–(A4) hold, then under
the control laws (15), we have

JNi (u) =

m
j=1

πjtr(DjDT
j ) +

m
j=1

tr(AjZjAT
j ) + O


1

√
N


. (31)
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Proof. From (3) and (20) and (A1) it follows that

JNi (u) = lim
T→∞

1
T

T
k=1


E
Aθi(k)x̃i(k)

2
+ 2E


x̃Ti (k)A

T
θi(k)Hθi(k)(g(k) − x(N)(k))


+ E

Hθi(k)[g(k) − x(N)(k)]
2+

m
j=1

πjtr(DjDT
j ). (32)

Noticing

lim
T→∞

1
T

T
k=1

E

x̃Ti (k)A

T
θi(k)Hθi(k)[g(k) − x(N)(k)]



≤


lim
T→∞

1
T

T
k=1

Aθi(k)x̃i(k)
2 1

2

×


lim
T→∞

1
T

T
k=1

Hθi(k)[g(k) − x(N)(k)]
2 1

2

≤


m
j=1

tr(AjZjAT
j ) max

1≤j≤m
∥Hj∥

2O


1
N

 1
2

= O


1
√
N


,

by (22) and (32) and Theorem 4.2, we can get (31). �

Remark 4.1. Comparing (31) with (5), the above index value is
larger than the optimal one (with full state information and
centralized control) by a term of

m
j=1 tr(AjZjAT

j ) + O(1/
√
N).

Thus, the distributed control (15) is sub-optimal, and from (21) the
error between the sub-optimal index value and the optimal one
in the case of large population is mainly attributed to the partial
observation of the system states.

Below we show the equilibrium property of (15).

Definition 4.4. A set of control {ui ∈ Ul,i, 1 ≤ i ≤ N} is called
an ε-Nash equilibrium if there exists ε ≥ 0 such that for any
1 ≤ i ≤ N ,

JNi (ui, u−i) ≤ inf
u′
i∈Ug,i

JNi (u′

i, u−i) + ε,

where u−i = {u0, . . . , ui−1, ui+1, . . . , uN}.

Theorem 4.5. For (1)–(3), if (A1)–(A4) hold, then the distributed
control (15) is an ε-Nash equilibrium, where ε =

m
j=1 tr(AjZjAT

j ) +

O(1/
√
N). Particularly, ε → 0 when N → ∞ and one of the

following conditions holds:
(a) Lj = 0, Cj is invertible for j = 1, . . . ,m;
(b) Lj = 0, ∥Dj∥ → 0 for j = 1, . . . ,m.

Proof. From Theorems 3.1 and 4.3, it follows that (15) is an ε-
Nash equilibrium, where ε =

m
j=1 tr(AjZjAT

j ) + O(1/
√
N). When

Lj = 0 and Cj is invertible, we have Zj = 0, which implies
ε → 0 as N → ∞. From Lj = 0, (13) can be transformed into
Yk =

m
j=1 pjkAj(I − MjCj)Yj(I − CT

j M
T
j )AT

j + πjDjDT
j , where

k = 1, . . . ,m. From Costa et al. (2005) with (A2), it follows that
Y =


∞

n=0 T n(πDDT ) < ∞, where Y = (Y1, . . . , Ym), πDDT
=

(π1D1DT
1, . . . , πmDmDT

m), and for any V = (V1, . . . , Vm), Tk(V ) =m
j=1 pjkAj(I −MjCj)Vj(I −CT

j M
T
j )AT

j . Thus, as ∥Dj∥ → 0, ∥Yj∥ → 0
for j = 1, . . . ,m, which gives ε → 0, as N → ∞. �
Fig. 1. Trajectories of x(200) and g .

5. Numerical simulation

We now use a numerical example to illustrate the consistency
of the MF estimation and the sub-optimality of distributed control
laws.

For the system (1)–(2), we set the parameters as follows: A1 =

−1, A2 = −0.8,D1 = 1,D2 = 0.6, C1 = 1, C2 = 1, L1 =

0.6, L2 = 0.4. {θi(k)} is a Markov chain taking value in {1, 2}
with the transition probability matrix P =


0.75 0.25
0.25 0.75


, and the

stationary distribution (0.5 0.5). Both {wi(k), 1 ≤ i ≤ N} and
{vi(k), 1 ≤ i ≤ N} are Gaussian white noise sequences with the
normal distributionN(0, 1). Let {xi0, i = 1, . . . ,N} be independent
and identically distributed random variables with N(1, 0.8). For
the index (3), the parameters are set as H1 = 0.9,H2 = 0.6, α1 =

1, α2 = 3.
Noticing that A = (−1, −0.8),D = (1, 0.6), C = (1, 1),

and
2

j=1 πjHj = 0.75 < 1, it can be verified that, Assumptions
(A1)–(A4) hold. From (15) we get the following distributed control
laws: for 1 ≤ i ≤ N ,

ui(k) = Hθi(k)g(k) + αθi(k) − Aθi(k)x̂i(k), (33)
where M1 = 0.7469,M2 = 0.8022, x̂i(k) given by (11), x̂i(0) = 1,
and g(k + 1) = 0.75g(k) + 2.

First, we check the consistency of the MF estimation. Letting
the number of the agents be 200, the trajectories of x(N) and g
are shown as Fig. 1. It can be seen that, g almost coincides with
x(200). This illustrates the consistency of the MF estimate given by
Theorem 4.2.

We now consider the index values of all the agents under the
distributed control (33). Let JN = max1≤i≤N JNi . Then, from (13) we
have Z1 = 0.1344 and Z2 = 0.0411, and thus, by Theorem 4.3 JN

should converge to
2

j=1 πjtr(DjDT
j ) +

2
j=1 tr(AjZjAT

j ) = 0.8555.
When the number of agents grows from 1 to 200, the trajectories
of JN are shown in Fig. 2, from which one can see that the index
value tends to 0.8555.

6. Concluding remarks

In this paper, we study distributed output feedback control
of Markov jump MASs under the game framework. Each agent
can only get its noisy output and jump parameters. We design
distributed control and show its sub-optimality.

It is worth pointing out that, the MAS considered in the paper
is a type of individual–population interacting system, in which the
population effect on a given agent is nearly deterministic and the
single-agent impact is negligible for the large population case. For
the distributed control of this type of systems, there are many
interesting problems worth investigating, such as the case with
unknown jump parameters, and the casewhere agents are coupled
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Fig. 2. Trajectory of JN with respect to N .

by both dynamics and cost indices. For the latter case, the filtering
equations of agents are coupled by the MF estimation function,
which together with coupled filtering Riccati equations will bring
essential difficulty into the analysis of the closed-loop system.
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